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Abstract: Learning real-world robotic manipulation is challenging, particularly

when limited demonstrations are available. Existing methods for few-shot manip-

ulation often rely on simulation-augmented data or pre-built modules like grasp-

ing and pose estimation, which struggle with sim-to-real gaps and lack exten-

sibility. While large-scale imitation pre-training shows promise, adapting these

general-purpose policies to specific tasks in data-scarce settings remains unex-

plored. To achieve this, we propose ControlVLA, a novel framework that bridges

pre-trained VLA models with object-centric representations via a ControlNet-

style architecture for efficient fine-tuning. Specifically, to introduce object-centric

conditions without overwriting prior knowledge, ControlVLA zero-initializes a

set of projection layers, allowing them to gradually adapt the pre-trained ma-

nipulation policies. In real-world experiments across 6 diverse tasks, including

pouring cubes and folding clothes, our method achieves a 76.7% success rate

while requiring only 10-20 demonstrations — a significant improvement over tra-

ditional approaches that require more than 100 demonstrations to achieve com-

parable success. Additional experiments highlight ControlVLA’s extensibility to

long-horizon tasks and robustness to unseen objects and backgrounds.

Keywords: Robotic manipulation, Imitation learning, Few-shot learning

1 Introduction

Robotic manipulation in the real world remains a fundamental challenge, particularly when learning

skills from limited demonstrations. While recent advances in robotic manipulation [1–16] have

shown promise, current methods still demand extensive training data and struggle to efficiently adapt

to new tasks and environments with few demonstrations. This limitation significantly hinders the

deployment of robots in diverse real-world scenarios, where large amounts of task-specific training

data are often impractical or prohibitively expensive.

To tackle this, previous works [10, 17–19] augment expert demonstrations in simulation to enhance

policy learning. However, these approaches typically assume a priori knowledge of object and en-

vironment CAD models, as well as precise 3D pose estimations—requirements often impractical

in real-world scenarios. Currently, imitation learning has achieved impressive success in manipula-

tion [1, 3, 8, 11, 20–23], primarily due to its scalability and capability to acquire skills across a wide

range of scenarios without relying on external a priori knowledge.

In particular, pre-trained general-purpose Vision-Language-Action models (VLA model) [3, 11,

22–25] has emerged as a promising approach for enabling generalizable robot behaviors across var-

ious tasks and environments. However, fine-tuning these VLA model for downstream tasks remains

data-intensive, as substantial amounts of task- and environment-specific data are still required to

adapt to the visual and action domains of the target task [3, 22, 23, 26]. On a separate front,

object-centric representations has shown potential in improving data efficiency for learning ex-
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Fig. 1: ControlVLA bridges pre-trained manipulation policies with object-centric representa-
tions via ControlNet-style efficient fine-tuning. ControlVLA requires only 10–20 demonstrations
to achieve 76.7% task success rate, significantly surpassing baseline’s 20.8% success rate.

pert policies [4, 7, 27]. By focusing on relevant object properties (e.g., shape, size, and position),

object-centric representations reduce the complexity of the input observation space. This approach

enhances policy robustness to changes in object pose and instance, while also making the policies

less susceptible to real-world noise compared to pixel-level features. Despite this, existing methods

still require hundreds of demonstrations to learn a task [4, 27], mainly due to the lack of an action

prior from VLA model in data-scarce scenarios.

To this end, we introduce ControlVLA, a novel learning framework that combines pre-trained

VLA model with object-centric representations for efficient few-shot learning. By integrating

object-centric representations into a pre-trained VLA model, our approach leverages both the rich

prior knowledge from large-scale pre-training and the data efficiency of object-centric learning.

Inspired by Zhang et al. [28], ControlVLA introduces additional cross-attention layers with zero-

initialized key-value (KV) projection weights, allowing expert policies to acquire task-specific

skills while progressively integrating object-centric representations. This design ensures that the

policy focuses on task-relevant concepts without compromising the generalization or action qual-

ity of the pre-trained VLA model. The zero-initialization of additional KV projections stabilizes

fine-tuning by mitigating the introduction of harmful noise, thereby enabling a seamless integration

of task-specific object-centric representations with general-purpose VLA model pre-training. As a

result, ControlVLA significantly reduces data requirements for task-specific adaptation, enhancing

the efficiency of robotic manipulation deployment in the real world.

We demonstrate the efficacy and efficiency of ControlVLA across 8 diverse real-world tasks,

achieving robust performance with only 10-20 demonstrations. The evaluation tasks span di-

verse manipulation challenges: pick-and-place tasks with rigid, soft, and precision-critical objects,

as well as complex manipulations including articulated object operation, object pouring, and de-

formable cloth folding. Empirically, ControlVLA attains an impressive 76.7% success rate across

all tasks with very limited demonstrations, significantly surpassing baseline methods that achieve a

mere 20.8% success rate. Additionally, we demonstrate the extensibility of ControlVLA on long-

horizon tasks and its robustness on unseen objects and backgrounds. Ablation studies confirm the

necessity of three key components: (1) VLA model pre-training for skill priors, (2) object-centric

representation for efficient task grounding and learning, and (3) ControlNet-style conditioning for

stable adaptation. In summary, ControlVLA bridges the gap between large-scale VLA model pre-

training and efficient object-centric adaptation, enabling robots to acquire complex skills from

minimal demonstrations.

2 Related Works

2.1 Few-shot Learning for Manipulation

Reducing reliance on costly demonstrations while ensuring robust performance remains a key chal-

lenge in robotic manipulation. Early approaches synthesized training data through simulation-based

augmentation [17, 18] or combined imitation with reinforcement learning for robustness [19], yet
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these methods depend heavily on accurate object poses and CAD models, limiting real-world ap-

plicability. To overcome sim-to-real gaps, especially in contact-rich or deformable tasks, recent

methods turn to human video priors, using representations like R3M [21], VIP [9] or Ag2Manip [2]

to guide policy learning. However, these largely rely on 2D cues and struggle with precise spatial

reasoning. Concurrently, few-shot learning aims to generalize from minimal demonstrations, with

DenseMatcher [29] and SPOT [7] addressing transferable skill learning via 3D correspondences and

object-centric planning. Yet, most approaches still require handcrafted grasping routines and accu-

rate pose pipelines, and few leverage pre-trained VLA model as priors. Our work addresses these

gaps by introducing ControlNet-style conditioning for object-centric policy modulation, enabling

efficient few-shot adaptation in unstructured settings.

2.2 Object-centric Representation Learning

Object-centric representation decomposes complex scenes into manipulable entities, enabling more

efficient reasoning for robot learning. Early methods represent objects by poses [30–32] or by

bounding boxes [33, 34], but their dependence on known categories or instance labels limits gener-

alization to novel objects and dynamic environments. Unsupervised discovery techniques segment

visual inputs into object-like regions without requiring labels [35, 36], yet they struggle in clut-

tered or occluded scenes and often produce inconsistent object identities [37, 38]. Furthermore,

most existing approaches fail to leverage large-scale pre-trained models effectively, aligning instead

to category-specific or pose-based features [39–42], which necessitates extensive task-specific tun-

ing and undermines the benefits of transfer learning. To address these challenges, we introduce a

unified framework that integrates object-centric decomposition with large-scale, data-driven repre-

sentations, thereby improving adaptability and transferability in real-world manipulation tasks.

2.3 ControlNet-style Fine-tuning

ControlNet [28] enhances large-scale pre-trained Stable Diffusion [43] by efficiently incorporating

additional conditional inputs, such as sketch, normal map, depth map or human pose, through zero-

initialized convolution layers. These layers start with zero weights and bias, ensuring no initial

impact on outputs while progressively learning to integrate new conditions. This methodology has

been extensively applied in various domains, such as controllable image generation [28, 44, 45],

video generation [46–48], and human motion generation [49, 50]. Despite its widespread adoption

in these areas, the application of ControlNet in the context of robotic manipulation has not yet been

investigated. Our study represents the first effort to adapt ControlNet-style fine-tuning to this field,

unifying large-scale VLA model pre-training with fine-tuning of object-centric representations to

enable few-shot robotic manipulation learning.

3 Preliminary

We formulate robot manipulation as a implicit discrete-time Markov Decision Process (MDP) M =
(S,A,T ,R, γ), where S represents the state space, A the action space, T the stochastic transition

probability, R the binary reward function with r ∈ {0, 1}, and γ ∈ [0, 1) the discount factor. In

our context, S denotes all robot and environment configurations, while A denotes the space of the

robot’s motor commands at each discrete time t. Our objective is to learn a closed-loop VLA model

π : O → A , where O is the observation space consisting of the robot’s proprioception, RGB

images, and language instruction, which serves as a partial projection of the state space S derived

from the real-world sensors. We provide further preliminary of diffusion policy [20] in the appendix.

4 Method

Given a pre-trained general-purpose policy πg : O → A, our goal is to efficiently adapt it into a

task-specific expert policy πe using limited expert demonstrations. To this end, we propose Con-

trolVLA, which employs a ControlNet-style fine-tuning that integrates object-centric representations
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Fig. 2: Overview of ControlVLA. ControlVLA leverages a ControlNet-style fine-tuning strategy
to integrate object-centric representations with the pre-trained VLA model. The zero-initialized
weights and biases preserve the rich prior knowledge of the pre-trained policy while progressively
grounding it in object-centric representation.

with a pre-trained VLA model (see Fig. 2). We first pre-train the general-purpose policy on a large-

scale, multi-task manipulation dataset (Sec. 4.1), then extract object-centric features to focus learn-

ing on task-relevant elements (Sec. 4.2), and finally fine-tune the policy by gradually incorporating

these features (Sec. 4.3). Implementation details are provided in the appendix.

4.1 VLA Model Pre-training

We begin by pre-training a general-purpose policy πg , using the public large-scale manipulation

datasets Dg =
{

(ot,at)
Ti

t=1

}Ng

i=1
across a diverse range of tasks and scenes, where Ng represents

the total number of episodes. Formally, we use πg : O → A to model the conditional action

distribution p (At | Ot), where At represents the future action sequence and Ot denotes the history

of the observations. The observation at time t consists of a single-view RGB image It, a language

instruction ℓt, and the robot’s proprioceptive state qt, such that ot = [It, ℓt, qt]. The image It and

language instruction ℓt are tokenized via pre-trained encoders and projected into a shared embedding

space through a linear projection layer, while the proprioceptive state qt is similarly embedded using

Multi-layer Perceptrons (MLPs).

The πg model adopts a diffusion transformer architecture to capture the multimodal conditional

action distribution. During training, the action sequence is supervised using a conditional denoising

loss. At inference, actions are sampled by iteratively denoising started from pure Gaussian noise

AK
t ∼ N (0, I) into the desired action A0

t ∼ qθ
(

A0
t | Ot

)

, with the process accelerated using

Denoising Diffusion Implicit Model (DDIM) [51] for real-time control.

4.2 Object-centric Representations

This section outlines the process of building object-centric representations Z ∈ Z as additional

action conditions, which enable task-specific expert policy πe to explicitly identify the key concepts

of the task and efficiently learn from few-shot demonstrations. The process involves two key steps:

(i) segment and track task-relevant objects, and (ii) learn to extract object-centric representations.

Segment and Track task-relevant objects. To build object representations that consistently attend

to task-relevant objects, it is essential to inform the model about their locations and local geometry

in the RGB image observation I . Our goal is to automatically access fine-grained instance masks
{

M i
}Nobj

i=1
corresponding to task-relevant objects

{

obji
}Nobj

i=1
, where Nobj denotes the number

of objects. To achieve this, we extract Nimg frames from demonstration and language instruction

as prompts, and leverage GroundingDINO [52] and SAM2 [53] to consistently segment and track

task-relevant objects, both in the training data and during real-time inference.
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Learn to extract object-centric representations. We aim to learn a fϕ to extract the object-centric

representations zi from i−th object mask M i as additional conditions for the expert policy πe. To

encode where and what relevant objects are, we design positional feature and geometrical feature

for each object. For positional feature zi
pos, we encode the mean coordinates of the object mask on

images using sinusoidal positional encoding [54]. For geometrical feature zi
geo, we obtain a spatial

feature map with a Convolutional Neural Network (CNN) [55] that runs on the mask of each task-

relevant object. Similar to the approach of Zhu et al. [4], we train the spatial network from scratch

rather than using a pre-trained model, as we require actionable visual features that are specifically

informative for continuous control tasks. Finally, we concatenate the positional and geometry feature

to form the object-centric representation zi =
[

zi
pos, z

i
geo

]

and Z =
{

zi
}Nobj

i=1
∈ Z

4.3 ControlNet-style Fine-tuning

Given a small set of task-specific dataset De =
{

(ot, zt,at)
Ti

t=1

}Ne

i=1
, where Ne represents the

number of demonstrations, we aim to efficiently fine-tune an expert policy πe : O ×Z → A from

πg : O → A with the object-centric representations.

In our context, the pre-trained policy is a transformer-based architecture that utilizes cross-attention

blocks to model actions conditioned on observations. Specifically, the cross-attention mechanism

computes the relationship between actions A and observations O as:

softmax

(

QKT

√
d

)

V , (1)

where Q = WaA + Ba represents the query projection, and K,V = WoO + Bo represent the

key and value projections, respectively. To incorporate the object-centric representation Z ∈ Z , we

extend the cross-attention mechanism by introducing a dual-attention structure.

softmax

(

QKT

√
d

)

V + softmax

(

QKT
z√
d

)

Vz, (2)

where Kz,Vz = WzZ +Bz are the key and value projections for the object-centric observations.

Inspired by Zhang et al. [28], we zero-initialize the additional KV-projection layers to ensure the

expert policy πe model behaves similarly to the pre-trained general-purpose policy πg during the

early stage of fine-tuning, preserving the model’s prior knowledge. Since the weight Wz and bias

Bz are initialized to 0, the key and value projections for Z are zero:

Kz = WzZ +Bz = 0, Vz = 0. (3)

Thus, the dual-attention in Eq. (2) reduces to the original cross-attention in Eq. (1), preserving the

pre-trained policy’s behavior at the first fine-tuning step. We provide further explanation in the

appendix.

5 Experiments

To evaluate the efficiency of ControlVLA, we conduct 8 various real-world tasks using only 10-20

demonstrations. Empirically, our findings indicate that our method consistently and significantly

improves success rates across all short-horizon tasks, achieving an overall success rate of 76.7%,

which markedly surpasses the baseline of 20.8%. For long-horizon tasks, we evaluate ControlVLA

on two challenging scenarios, where it outperforms the state-of-the-art method with approximately

3x higher success rates. We further assess policy performance on data scaling. Our results show

that our method rapidly converges to a high success rate with as few as 20 demonstrations, while

baselines require more than 100 demonstrations to achieve comparable performance. Additionally,

we also demonstrate the robustness of our method over unseen objects and backgrounds.
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Tab. 1: Illustrations of Evaluation Tasks. We develop a suite real-world tasks for evaluation,
including rigid, soft, articulated, deformable, and fluid-like objects. Two tasks are long-horizon,
involving temporally extended behaviors with multiple sub-goals and sustained policy control.

TASK NAME TASK TYPE #DEMOS LANGUAGE DESCRIPTION

RearrangeCup Rigid Pick&Place 14 Rearrange the cup and set it on the light plate.
OrganizeToy Soft Pick&Place 20 Pick up the green toy and place it in the blue bowl.

OrganizeScissors Precise Pick&Place 15 Pick up the scissors from the pen holder into the blue basket.
OpenCabinet Articulated Manipulation 11 Open the cabinet with the black handle.
FoldClothes Deformable Manipulation 16 Fold up the sleeves of the pink clothing on the table.
PourCubes Pouring Behavior 19 Pour the blocks from the green cup into the blue box.

OrganizeMultiObjs Long Horizon 25 Organize eggplant, strawberry, and carrot into the woven basket.
ReplaceObjInDrawer Long Horizon 25 Open the drawer, take out the bread, and put the carrot in.

Fig. 3: Task Visualization. The initial and target states are shown as transparent and solid layers,
respectively. The yellow arrow highlights the desired transition.

5.1 Experimental Setup

Tasks. We develop a suite of various real-world tasks to evaluate the efficacy of our proposed

method. These tasks are designed to cover a wide range of manipulation challenges, including

pick-and-place various types of objects like rigid RearrangeCup, soft OrganizeToy, and pre-

cise OrganizeScissors, as well as articulated OpenCabinet, deformable FoldClothes,

and fluid-like PourCubes manipulations. To further evaluate the performance in long-horizon sce-

narios, we introduce 2 additional tasks: OrganizeMultiObjs and ReplaceObjInDrawer,

which entail sequential decision-making and handling of temporally extended goals. A detailed

illustration of each task is given in Tab. 1 while visualization is provided in Fig. 3.

Baselines and Ablations. We compare our method against Octo [22], π0 [26], VIOLA [4],

ACT [56], and Diffusion Policy [20]. Octo and π0 are pre-trained foundation VLA model, em-

ploying a diffusion-based model to decode the action tokens. VIOLA is a widely recognized

2D object-centric transformer-based policy learning framework that utilizes Region Proposal Net-

work (RPN) [57] to extract object-centric representations. ACT and Diffusion Policy are among

the most extensively studied and widely applied imitation visuomotor policies. ACT models the ac-

tions using a Variational Autoencoder (VAE), while Diffusion Policy leverages Denoising Diffusion

Probabilistic Model (DDPM) to capture more multimodal action distributions.

In our ablation study, we systematically remove individual components from our method to investi-

gate their independent contributions. We ablate the pre-training phase by training an object-centric

Diffusion Policy from scratch, denoted as “w/o pretrain”. We eliminate the object-centric represen-

tations by directly fine-tuning the pre-trained model, denoted as “w/o object-centric”. To assess the

significance of ControlNet-style fine-tuning in integrating object-centric representations into pre-

trained policies, we omit the zero-initialization of the projection layers for additional object-centric

conditions, denoted as “w/o zero-init”.

We provide Data Collection and Evaluation Setup and Protocol details in the appendix.
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Fig. 4: Main Comparison and Ablation Study. All policies are trained or fine-tuned from a shared,
limited demonstration dataset for each task. *Octo, ACT, and VIOLA are omitted due to very low
success rates, with overall success rates of 1.6%, 5.0%, and 0.0%, respectively.

Tab. 2: Performance on Long-horizon Tasks.

OrganizeMultiObjects ReplaceObjectsInDrawer

Stage-1 Stage-2 Stage-3 Overall Stage-1 Stage-2 Stage-3 Overall

DP [20] 14/30 7/14 3/7 10.0% 11/30 5/11 2/5 6.7%
π0 [26] 18/30 10/18 7/10 23.3% 19/30 9/19 5/9 16.7%
ControlVLA 26/30 23/26 17/23 56.7% 25/30 22/25 19/20 63.3%

Tab. 3: Unseen Test.

SR

obj-1 76.7%
obj-2 63.3%
obj-3 70.0%
bg 60.0%

5.2 Comparative and Ablation Results

For full comparison and ablation studies, we evaluate each model over 20 trials across 6 short-

horizon tasks. All policies are trained or fine-tuned from a shared, limited demonstration dataset

for each task. As illustrated in Fig. 4, the task success rates are presented within and across all

evaluation tasks, providing a comprehensive overview of our findings.

Our method, ControlVLA, achieves an impressive overall task success rate of 76.7%, significantly

outperforming the baselines. The strongest baseline, Diffusion Policy, attains only a 20.8% success

rate and struggles to precisely manipulate target objects or learn complex behaviors such as pouring.

Octo and ACT only achieve 2/20 and 6/20 success on the OpenCabinet task, with no successes

in other tasks, resulting in the overall success rate of just 1.6% and 5.0%. Despite Octo’s advantage

from large-scale pre-training, its regression-based backbone fails to model action distributions with

multiple distinct modes. While ACT leverages a VAE to represent action diversity, it is hindered

by posterior collapse, especially in the low-data regime. VIOLA fails primarily due to the lack of

action pre-training and its object-centric representation extraction, which relies on a large number

of task demonstrations. In contrast, ControlVLA demonstrates robust and efficient learning across

various real-world tasks even when only limited demonstrations are available.

Ablation studies reveal the critical role of key components of ControlVLA. Removing the pre-

training phase and directly incorporating object-centric representations (“w/o pretrain”) results in

severe jitter problems when policies deploy to a real robot, causes severe execution jitter and sig-

nificant drops in performance across tasks (details are provided in the appendix). We hypothesize

that the object-centric features may provide deceptive low-loss pathways during the early training

stage, incentivizing the policy to bypass learning from the more stable visual features. Eliminating

object-centric representations during fine-tuning (“w/o object-centric”) provides only a marginal im-

provement over training Diffusion Policy from scratch, highlighting the importance of object-centric

representations. Finally, removing zero-initialization for additional object-centric conditions (“w/o

zero-init”) causes a drastic drop in success rate, emphasizing the role of proper initialization in sta-

bilizing training and improving task performance. Notably, our complete methodology degenerates

to the Diffusion Policy baseline when stripping all three components (pre-training, object-centric

representations, and zero-initialization).
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5.3 Performance on Long-horizon Tasks

We evaluate the ability of ControlVLA to perform long-horizon tasks, each trained with only 25

demonstrations. These tasks require the robot to execute multiple sub-goals in sequence, making

them particularly challenging under limited supervision. Specifically, OrganizeMultiObjects

involves placing three objects—eggplant, strawberry, and carrot—into a woven basket, correspond-

ing to three sequential stages. ReplaceObjectsInDrawer requires opening a drawer, taking

out a bread item, and placing a carrot inside, similarly decomposable into three dependent stages.

As shown in Tab. 2, ControlVLA significantly outperforms baselines under this low-data regime,

achieving an average 60.0% success rate on two long-horizon tasks. The stage-wise breakdown fur-

ther demonstrates ControlVLA’s consistent performance throughout long action sequences. These

results highlight the robustness of ControlVLA in long-horizon settings, even with minimal demon-

strations, and its ability to reduce compounding errors during sequential execution.

5.4 Performance on Data Scaling

Fig. 5: Effect of Data Scaling on Perfor-
mance in the OrganizeToy Task.

We evaluate ControlVLA’s data efficiency through con-

trolled scaling experiments on the OrganizeToy task,

benchmarking against established baseline methods.

Each approach is tested across demonstration set sizes

of 10, 20, 50, and 100 episodes with 25 trials per con-

dition, with results shown in Fig. 5. While all methods

improve as the amount of training data increases, Con-

trolVLA achieves a high success rate of 80% with only

20 demonstrations — a level unattained by baselines even

at 100 demonstrations. This highlights the efficiency of

ControlVLA in learning from limited data.

5.5 Generalization on Object and Background

Fig. 6: Generalization over object and
background appearance changes.

We evaluate the generalization and robustness of Con-

trolVLA on the OrganizeToy task by testing it with

unseen objects and backgrounds. Trained on 20 demon-

strations using a green toy and uniform background, Con-

trolVLA achieves a 70.0% average success rate across

three novel objects (bread, banana, orange) and a 60.0%

success rate on a previously unseen background—requiring only an object prompt for mask extrac-

tion (Tab. 3). Although these results fall short of the 90% in-domain success rate, they highlight

ControlVLA’s capacity to adapt to dynamic and diverse environments without additional training.

6 Conclusion

This work introduces ControlVLA, a framework that bridges VLA model pre-training with object-

centric representations to enable efficient few-shot adaptation for robotic manipulation. By integrat-

ing a ControlNet-style fine-tuning, ControlVLA injects task-specific object-centric conditions into a

pre-trained VLA model through zero-initialized key-value projection layers. This design preserves

the rich prior knowledge of the base policy while progressively grounding it in structured object

properties, achieving stable fine-tuning with minimal demonstrations. Across 8 diverse real-world

tasks—ranging from rigid object pick-and-place to deformable cloth folding and long-horizon tasks

— ControlVLA achieves a 76.7% success rate with only 10–20 demonstrations, outperforming the

baselines. By reducing demonstration requirements to practical levels, ControlVLA lowers barriers

to deploying robots in diverse scenarios.
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7 Limitations

Our evaluation tasks are currently constrained to single-arm manipulation, with experiments con-

ducted primarily in controlled indoor environments. While these settings provide a reliable testbed,

they fall short of capturing the full range of challenges faced in real-world deployment. To improve

the generalization of ControlVLA, it is essential to explore bi-manual and in-the-wild manipulation

tasks. Nevertheless, ControlVLA is a general framework, and future work could explore larger pre-

trained bi-manual foundation VLA model, along with more efficient and task-relevant modalities

and representations to tackle these challenges.
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A More Experiments on π0

We further adapt and evaluate our ControlVLA method on a more general pre-trained VLA model,

π0 [26], referred to as ControlVLA@π0. The π0 model leverages a pre-trained vision-language

backbone and introduces a separate action expert that outputs continuous actions using flow match-

ing. ControlVLA@π0 extends this architecture by incorporating an additional object expert and a

set of zero-convolution layers to progressively inject object-centric representation guidance. These

zero-convolution layers ensure that the object-centric cues are integrated as additional conditions

without disrupting the learned action prior, enabling robust skill learning from limited demonstra-

tions. We conduct the comparison studies over 20 trials across 4 sub-tasks, each fine-tuned with

limited demonstrations, consistent with the setup used in the main paper.

As shown in Tab. 4, our adaptation method ControlVLA@π0 consistently outperforms the fine-tuned

π0, demonstrating that ControlVLA can serve as a plug-in module to enhance performance across

a broader range of pre-trained VLA model models. The improvement is most pronounced on the

OrganizeScissors task, highlighting ControlVLA’s ability to provide more precise guidance

for fine-grained manipulation in data-scarce scenarios.

Tab. 4: Task success rates of π0 and ControlVLA@π0 across various tasks.

Organize
Toy

Organize
Scissors

Open
Cabinet

Fold
Clothes

Overall

π0 [26] 55.0% 15.0% 45.0% 40.0% 38.6%
ControlVLA@π0 85.0% 80.0% 85.0% 75.0% 81.3%

B Preliminary of Diffusion Policy

Diffusion policy [20] formulates the visuomotor policy π as the DDPM [58], which can model

complex multimodal action distributions and facilitate a stable training behavior. DDPM performs

K iterations of a denoising process, starting from a Gaussian noise xK ∼ N (0, I) and evolving

toward the desired output x0 ∼ qθ
(

x0
)

. The denoising process is described by the following

equation:

xk−1 = α
(

xk − βϵθ
(

xk, k
))

+ σN (0, I) , (4)

where α, β, and σ are functions of the timestep k, collectively known as the noise schedule, and the

ϵθ is the distribution shift prediction network with the trainable parameter θ.

The training objective is to minimize the variational lower bound of KL-divergence between the

given data distribution p
(

x0
)

and the θ-parameterized distribution qθ
(

x0
)

. As shown in [58], the

loss function can be simplified as:

L = Et∼[1,K],x0,ϵk

[

∥ϵk − ϵθ
(

x0 + ϵk, k
)

∥2
]

. (5)

Diffusion policy represents the robot actions at:t+Ta
as the model output x and conditions the

denoising process on the robot observations ot:t−To
, where at ∈ A , ot ∈ O , Ta and To denote

the horizon lengths of the action and observation sequences. For convenience, we use At and

Ot to represent the action and observation sequences in the following discussion. The DDPM is

naturally extended to approximate the conditional distribution p (At | Ot) for planning. To capture

the conditional actions distribution, the denoising process is modified from Eq. (4):

Ak−1
t = α

(

Ak
t − βϵθ

(

Ak
t , k

))

+ σN (0, I) . (6)

The training loss is modified from Eq. (5):

L = Et∼[1,K],A0
t
,ϵk

[

∥ϵk − ϵθ
(

A0
t + ϵk,Ot, k

)

∥2
]

. (7)

In practice, we exclude observation features from the denoising process for better accommodation

of real-time robot control, while the formulation remains the same.
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C Further Explanation of ControlNet-style Fine-tuning

A common misunderstanding with zero-initialized weights and biases is that they produce zero

gradients and are, therefore, untrainable. We demonstrate that the additional KV-projection layers

(Wz,Bz) and the object-centric representations Z can be optimized despite their zero initialization,

which is similar to the case in ControlNet [28].

Let ∂L
∂Vz

denote the upstream gradient from the loss L. The gradients for Wz and Bz are:






















∂L
∂Wz

=
∑

p,i

∂L
∂Vzp,i

·Zp,i

∂L
∂Bz

=
∑

p,i

∂L
∂Vzp,i

· 1
(8)

Since Z is non-zero, ∂L
∂Wz

̸= 0 if ∂L
∂Vz

̸= 0. Similarly, ∂L
∂Bz

accumulates non-zero gradients. After

one gradient step:














Wz
∗ = Wz − βl ·

∂L
∂Wz

̸= 0

Bz
∗ = Bz − βl ·

∂L
∂Bz

̸= 0

(9)

This ensures K∗
z and V ∗

z become non-zero, allowing the dual-attention to incorporate Z.

Considering Z is learnable, its gradient is:

∂L
∂Z

= Wz
T · ∂L

∂Vz

. (10)

Since Wz
∗ ̸= 0, Z receives non-zero gradients and is updated accordingly. This aligns with the

zero-convolution principle, where gradients persist despite zero-initialized parameters. We fine-tune

the expert policy using the conditional denoising loss as defined in Eq. (7).

With the ControlNet-style fine-tuning, we efficiently integrate additional object-centric conditions

into the pre-trained visuomotor policy. This approach ensures that when the KV-projection layers

are zero-initialized in the dual cross-attention module, the deep neural features remain unaffected

prior to any optimization. The capabilities, functionality, and output action quality of the pre-trained

visuomotor modules are perfectly preserved, while further optimization becomes as efficient as stan-

dard fine-tuning. This allows ControlVLA to simultaneously leverage the advantages of large-scale

pre-training and object-centric representations, accelerating real-world robot adoption by signifi-

cantly reducing the data requirements for task deployment.

D Implementation Details of ControlVLA

In the main paper Sec. 4.1, we pre-train the policy πg on the full DROID dataset [59], using the

wrist camera image It, end-effector poses and gripper widths qt, and episode language descriptions

ℓt. The observation and action horizons are set to To = 2 and Ta = 16. The pre-trained policy,

implemented as a Diffusion Transformer [20] with 29M parameters, uses a CLIP [60] ViT-B/16

vision encoder and a Transformer text encoder. We pre-train πg with AdamW (learning rates:

1× 10−4 for denoising model, 3× 10−5 for vision; text encoder frozen) on 4 NVIDIA A800 GPUs

for 3 days. In Sec. 4.2, we extract object-centric representations from raw images. In Sec. 4.3, we

fine-tune πe on evaluation tasks, adding ∼5M parameters. Fine-tuning uses the same settings as

pre-training and runs on a single NVIDIA A800 GPU for 12 hours.

E Details of Experiments

E.1 Data Collection

We collect a small set of demonstrations for each evaluation task. For short-horizon tasks, we use

UMI [8], an arm-agnostic data collection system with a hand-held gripper for efficient demonstration
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Fig. 7: Evaluation Setup. The evaluation uses two robot platforms: the Franka Panda (left), for 6
short-horizon tasks; and the AstriBot-S1 (right), for 2 long-horizon tasks.

gathering. UMI features a wrist-mounted GoPro camera that captures RGB images and 6D end-

effector pose trajectories using visual SLAM [61] fused with onboard IMU data. For long-horizon

tasks, we use Meta Quest [62] to teleoperate the AstriBot-S1 [63], enabling immersive, low-latency

6DoF control via VR motion tracking. The operator’s hand movements are mapped to the robot in

real time, allowing intuitive and precise demonstrations. AstriBot-S1 is a more human-like robot

with spherical joints at the shoulder and elbow, closely mimicking the range and fluidity of human

articulation. The number of demonstrations per evaluation task is detailed in the main paper Tab. 1.

E.2 Evaluation Setup and Protocol

For short-horizon tasks, we deploy a Franka Emika FR3 arm with a Panda gripper and the same

GoPro camera used during data collection for policy inference. For long-horizon tasks, we execute

the policy on the AstriBot-S1 robot, which is equipped with a wrist-mounted RealSense camera

for capturing RGB observations. Task success rate serves as the primary evaluation metric. Each

trial is terminated if the policy shows no sign of progress, the robot enters a potentially unsafe

interaction with the environment, or the task is completed. All evaluations are conducted in the same

environment used for data collection, but with randomized initial configurations of both the robot

and the objects to ensure robustness and generalization. Fig. 7 provides an overview of the evaluation

setup, and Fig. 8 shows the initial objects and robot states distribution of policy evaluation.

Fig. 8: Initial state distribution of policy evaluation.
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